数据采集技术的优缺点_数据采集技术有哪些


来源: 青年汽车云小站

1、大数据采集技术,大数据预处理技术,大数据存储及管理技术,大数据分析及挖掘技术,大数据展现与应用技


【资料图】

1、大数据采集技术,大数据预处理技术,大数据存储及管理技术,大数据分析及挖掘技术,大数据展现与应用技术数据采集是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。

2、重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

3、大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

4、重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。

5、主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。

6、开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

7、大数据分析技术。

8、改进已有数据挖掘和机器学技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

9、大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

本文到此分享完毕,希望对大家有所帮助。


标签:

[责任编辑:{haixiayule]

最近更新